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What we perceive are never unique properties of 

individual objects, but always and only properties 

that objects possess in common with other objects. 

[...] the passage from concepts of "substance" to 

concepts of "function" is characteristic of the 

historical development of science. "Concepts-things" 

have gradually and often painstakingly given way to 

"relational concepts". 

(Heinrich Klüver in the introduction to "The sensory 

order" by Friedrich A. von Hayek.) 

 

Summary 

The following expressions and formulas relate the masses of thirteen elementary particles to each other, with 
the aim of showing that their apparently random values are connected and interdependent. 
 
The mass of each specific particle is a linear combination (in a generalized sense) of other particles, or the 
product of a numerical coefficient for a particle. In turn, the coefficients are combinations of mass ratios. 
 
So, starting from the mass of each particle it is possible to find one or more "paths" that lead to each other 
mass. 
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𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±) = √(
𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑚𝑝
+
9

10
)
2

− 1 

 

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) = √1 + (
𝑚𝑒

𝑚𝜋±
)
2

 

 

(
𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑚𝑝
+
9

10
)

2

− (
𝑚𝑒

𝑚𝜋±
)
2

= 1 

𝑐𝑜𝑠ℎ2(𝜃𝑚𝜋±) − 𝑠𝑖𝑛ℎ2(𝜃𝑚𝜋±)= 1     

𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑚𝑝
+
9

10
 

PART I – A relationship between the masses of proton, electron, μ lepton and charged 

π meson. 

 

Let’s consider the expression :                                      , which combines the masses of the 

 μ lepton (𝑚𝜇),  of electron (𝑚𝑒) and of proton (𝑚𝑝).  For convenience we will call it  

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±), that is: hyperbolic cosine of θ𝑚𝜋±. The reason for the name is that there is 

another expression:  
𝑚𝑒

𝑚𝜋±
  , which we will call 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±), where 𝑚𝜋± is the mass of the 

charged π meson, for which: 

 

[1.1] 

 

This equality is formally analogous to:        of the hyperbolic 

cosine and sine, and therefore we will exploit this correspondence extensively to simplify 

various formulas. 

Expression  [1.1]  therefore highlights a numerical relationship between the values of the 

electron, proton, μ lepton and charged π meson masses.  

 

[The values of the masses are taken from the tables published by NIST, Codata and / or Particle Data Group 

(PDG). All the results obtained fall within the limits of the experimental errors with which the masses are known.] 

 

It is also evident, based on the definition given, that: 

 

          [1.2]    
                                                                                     

 

 

and that it is also:        [1.3] 

 

[We will often use from here on one form or the other of the hyperbolic or trigonometric sines and cosines 

depending on whether we are interested in making the masses of certain particles appear explicitly in the 

formulas or at least excluding them from direct references, given their intertwined relationships.] 
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𝑚𝑝 =
𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

√1 + (
𝑚𝑒
𝑚𝜋±

)
2
−
9
10

 

𝑚𝑝 =
𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −
9
10

 

𝑚𝑝 = (
1

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −
9
10

) ∗ 𝑚𝜇 − (
𝑒𝜋

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −
9
10

) ∗ 𝑚𝑒 

 

𝑚𝜇 = 𝑚𝑝(√1 + (
𝑚𝑒

𝑚𝜋±
)
2

−
9

10
) + 𝑒𝜋 ∗ 𝑚𝑒 

𝑚𝜇 = 𝑚𝑝 (𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −
9

10
) + 𝑒𝜋 ∗ 𝑚𝑒 

𝑚𝜋± =
𝑚𝑒

√(
𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑚𝑝
+
9
10)

2

− 1

 

𝑚𝜋± =
𝑚𝑒

𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±) 
 

We can therefore derive from [1.1], for example, the mass of the proton as a function of the 

other three particles: 

          [1.4]     

    

 

and in a more concise form:         [1.5] 

 

[The multiplication sign (*) was later maintained or omitted depending on the need for clarity or convenience.] 

Since 𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±)  is a dimensionless number, we can highlight how here 𝑚𝑝 results in a 

linear combination of 𝑚𝜇 and 𝑚𝑒, in which 𝑚𝜋± contributes to determine the value of the 

coefficients: 

 

                [1.6] 

 

The constant  
9

10
 can be eliminated, as we will see later, provided that other particles and 

more complicated expressions are introduced into the formulas. 

Similarly, due to [1.1] ,  the mass of the μ lepton is: 

 

         [1.7] 

 

or:                [1.8] 

 

while that of 𝜋± meson is:                  [1.9]  

 

 

and therefore, simply:               [1.10] 
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𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2𝑚𝑛
+
9

10
 

𝑠𝑖𝑛(𝜑) =
𝑚𝜋0

𝑚𝐾0
√5 

(5𝑚𝜋0 − 4𝑚𝜋±)

(4𝑚𝜋0 − 2𝑚𝜋±)
 

The concise form will be more advantageous later, and will allow to better compare the 

structure of some formulas. 

As for the electron, the expression of its mass - seen as unknown and as a function of  the 

other three masses considered here -, gives rise to a second degree equation: 

(𝑒2𝜋 −
𝑚𝑝2

𝑚𝜋±
2)𝑚𝑒

2 − ((2𝑚𝜇 +
9

5
𝑚𝑝) 𝑒𝜋)𝑚𝑒 + (

9

10
𝑚𝑝 +𝑚𝜇)

2

−  𝑚𝑝2 = 0 

 

which implies:  𝑚𝑒1,2 = 

=

(2𝑚𝜇 +
9
5
𝑚𝑝) 𝑒𝜋 ±√((2𝑚𝜇 +

9
5
𝑚𝑝) 𝑒𝜋)

2

− 4 ∗ (𝑒2𝜋 −
𝑚𝑝2

𝑚𝜋±
2) ∗ ( (

9
10𝑚𝑝 +𝑚𝜇)

2

−𝑚𝑝2)

2 (𝑒2𝜋 −
𝑚𝑝2

𝑚𝜋±
2)

 

which has two positive solutions: the second is precisely the known mass of the electron, the 

other a much larger mass, which is worth 1,5896586(18)*10-28 kg. It has no matching  

between the known masses. 

However, we will soon see a simpler formulation of the electron mass. 

 

PART II – The neutron, the neutral π e K mesons and additional formulas for 𝒎𝝅± and 

𝒎𝒆. 

 

Now consider the expression:         [2.1] 

 

in which 𝑚𝑛  is the neutron mass. We will call it  𝑐𝑜𝑠(𝜑). The reason, similarly to what we 

saw above, lies in the fact that there is another expression, which we will call 𝑠𝑖𝑛(𝜑): 

        [2.2] 

 

where 𝑚𝜋0 is the mass of the neutral 𝜋 meson and 𝑚𝐾0 that of the neutral K  meson, for 

which the trigonometric relationship exists:  cos(𝜑)2 + sin(𝜑)2 = 1,  that is: 
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(
𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2𝑚𝑛
+
9

10
)

2

+ (
𝑚𝜋0

𝑚𝐾0
√5 

(5𝑚𝜋0 − 4𝑚𝜋±)

(4𝑚𝜋0 − 2𝑚𝜋±)
)

2

= 1 

𝑚𝑛 =
𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2(√1 − (
𝑚𝜋0

𝑚𝐾0 √5 
(5𝑚𝜋0 − 4𝑚𝜋±)
(4𝑚𝜋0 − 2𝑚𝜋±)

)
2

−
9
10)

 

𝑐𝑜𝑠(𝜑) = √1 − (
𝑚𝜋0

𝑚𝐾0
√5 

(5𝑚𝜋0 − 4𝑚𝜋±)

(4𝑚𝜋0 − 2𝑚𝜋±)
)

2

 

𝑚𝑛 =
𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2 (cos(𝜑) −
9
10)

 

𝑚𝜇 −𝑚𝑝 (𝑐𝑜𝑠ℎ(𝜃mπ±) −
9

10
) 

𝑚𝑛 =
2𝑚𝜇 −𝑚𝑝 (𝑐𝑜𝑠ℎ(𝜃mπ±) −

9
10)

2 (cos(𝜑) −
9
10)

 

 

 𝑚𝑝(𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −
9

10
) + 𝑒𝜋 ∗ 𝑚𝑒 

𝑚𝑛 =
𝑚𝑝(𝑐𝑜𝑠ℎ(𝜃mπ±) −

9
10)

+ 2𝑒𝜋 ∗ 𝑚𝑒

2 (cos(𝜑) −
9
10)

 

 

            [2.3] 

 

From this relationship we derive the equation for the mass of the neutron: 

 

           [2.4] 

 

 

Since 𝑐𝑜𝑠(𝜑) [2.1] can be written as: √1− 𝑠𝑖𝑛(𝜑)2 , i.e., it is also: 

 

          [2.5] 

 

we rewrite the neutron mass as:            [2.6] 

 

which highlights the similarity with the formula of the proton mass mp in [1.5]. 

 

Using the relation [1.8] and replacing  𝑒𝜋 ∗ 𝑚𝑒  in [2.6] with:               ,   

we get: 

 

              [2.7] 

 

or: 

 

         [2.8] 

 

where 𝑚𝜇 was replaced by:        .  
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𝑚𝑝 =
2𝑚𝑛 ∗ (𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒)

2𝑚𝑛 ∗ (𝑐𝑜𝑠ℎ(𝜃mπ±) − cos(𝜑)) + (𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒) 
 

𝑚𝑛 =
𝑚𝑝 ∗ (𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒)

2 (𝑚𝑝 ∗ (cos(𝜑) − 𝑐𝑜𝑠ℎ(𝜃mπ±)) + (𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒))
 

9

10
=  𝑐𝑜𝑠(𝜑) −

𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2𝑚𝑛
 

9

10
=  𝑐𝑜𝑠(𝜃𝑚𝜋±) −

𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑚𝑝
 

𝑚𝜇 =  
1

2
(𝑐𝑜𝑠ℎ(𝜃 𝑚𝜋±) −

9

10
) ∗ 𝑚𝑝 + (𝑐𝑜𝑠(𝜑) −

9

10
) ∗ 𝑚𝑛 

𝑚𝑒 =
2𝑚𝑛 ∗ (𝑐𝑜𝑠(𝜑) −

9
10)

−𝑚𝜇

𝑒𝜋
 

 
9

10
=
2𝑚𝑛 ∗ 𝑐𝑜𝑠(𝜑) + 𝑚𝑝 ∗ 𝑐𝑜𝑠ℎ(𝜃 𝑚𝜋±) − 2𝑚𝜇

2𝑚𝑛 +𝑚𝑝
 

From the synthesis of the two formulas [2.7] and  [2.8], 𝑚𝑝 can be expressed as: 

              [2.9]   

and inversely: 

                [2.10]   

 

Note, in particular, the various changes of sign in these two last formulas and that, as 

promised, the constant  
9

10
  has been eliminated. Indeed, it is also:  

 

 

as well as, of course: 

 

             and:     

 

In turn, the electron and lepton 𝜇 masses can be written, using [2.6] (and  [2.5] for 𝑐𝑜𝑠(𝜑) ), 
as: 

 

        [2.11] 

 

         [2.12] 

 

and also (from  [2.6] and from the already used replacement of  𝑒𝜋 ∗𝑚𝑒 ) as: 

   

            [2.13] 

 

which highlights 𝑚𝜇 as a linear combination of 𝑚𝑝 and 𝑚𝑛.  

 

𝑚𝜇 = 2𝑚𝑛 ∗ (𝑐𝑜𝑠(𝜑) −
9

10
) − 𝑒𝜋 ∗ 𝑚𝑒 
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𝑚𝐾0 =
𝑚𝜋0 ∗ √5 

(5𝑚𝜋0 − 4𝑚𝜋±)
(4𝑚𝜋0 − 2𝑚𝜋±)

√1 − (
𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2𝑚𝑛
+
9
10)

2
 

𝑠𝑖𝑛(𝜑) = √1 − (
𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2𝑚𝑛
+
9

10
)
2

 

𝑚𝐾0 =
𝑚𝜋0 ∗ √5 

(5𝑚𝜋0 − 4𝑚𝜋±)
(4𝑚𝜋0 − 2𝑚𝜋±)

𝑠𝑖𝑛(𝜑)
 

From [2.3] we can make 𝑚𝐾0 explicit as a function of  𝑚𝜋0, 𝑚𝜋±, 𝑚𝜇, 𝑚𝑒  and 𝑚𝑛 : 

 

 

            [2.14] 

 

 

Written 𝑠𝑖𝑛(𝜑) as  √1− 𝑐𝑜𝑠(𝜑)2 , that is (for [2.1], [2.2]  and  [2.3] ):   

 

           [2.15] 

 

𝑚𝐾0 becomes: 

 

          [2.16] 

 

If we now make explicit [2.16] for 𝑚𝜋0, we get a second degree equation: 

5√5 𝑚𝜋0
2
− (4𝑚𝐾0 ∗ 𝑠𝑖𝑛(𝜑) + 4√5 𝑚𝜋±)𝑚𝜋0 + 2𝑚𝐾0 ∗ 𝑠𝑖𝑛(𝜑) ∗ 𝑚𝜋± = 0 

Dividing it by √5 , we have: 

5 𝑚𝜋0
2
− (

4

√5
𝑚𝐾0 ∗ 𝑠𝑖𝑛(𝜑) + 4 𝑚𝜋±)𝑚𝜋0 +

2

√5
𝑚𝐾0 ∗ 𝑠𝑖𝑛(𝜑) ∗ 𝑚𝜋± = 0 

In this way we have the value 10 as the denominator of the solution formula (we will see 
why): 

 𝑚𝜋01,2= 
(
4

√5
𝑚𝐾0∗𝑠𝑖𝑛(𝜑)+4 𝑚𝜋±)±√(

4

√5
𝑚𝐾0∗𝑠𝑖𝑛(𝜑)+4 𝑚𝜋±)

2
−4∗5∗

2

√5
𝑚𝐾0∗𝑠𝑖𝑛(𝜑)∗𝑚𝜋±

10
 

Of the two solutions, both positive, 𝑚𝜋01 coincides with the known value of  𝑚𝜋0, while                           

𝑚𝜋02 = 4.4501800(50)*10(-29).  The latter value has no matching among the known masses, 

although it shows some "relationships". 

Now, since 𝑚𝜋01 ≡  𝑚𝜋0, we can write: 
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𝑚𝜋± =
5√5 ∗ 𝑚𝜋0

2
−√1 − (

𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒
2𝑚𝑛

+
9
10)

2

∗ 𝑚𝐾0 ∗ 4𝑚𝜋0

2 ∗ (2√5 ∗ 𝑚𝜋0 −√1 − (
𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2𝑚𝑛
+
9
10)

2

∗ 𝑚𝐾0)

 

𝑚𝜋± =
5√5 ∗ 𝑚𝜋0

2
− 4𝑠𝑖𝑛(𝜑) ∗ 𝑚𝐾0 ∗ 𝑚𝜋0

 4√5𝑚𝜋0 − 2𝑠𝑖𝑛(𝜑) ∗ 𝑚𝐾0
 

𝑚𝜋± = (
5√5

4√5 − 2𝑠𝑖𝑛(𝜑) ∗
𝑚𝐾0

𝑚𝜋0

) ∗ 𝑚𝜋0 − (
4𝑠𝑖𝑛(𝜑)

4√5 − 2𝑠𝑖𝑛(𝜑) ∗
𝑚𝐾0

𝑚𝜋0

) ∗ 𝑚𝐾0 

𝑚𝜋± =
𝑚𝑒

𝑠𝑖𝑛ℎ(𝜃mπ±)
 

1

10
= 

 𝑚𝜋0

(
4

√5
𝑚𝐾0∗𝑠𝑖𝑛(𝜑)+4 𝑚𝜋±)+√(

4

√5
𝑚𝐾0∗𝑠𝑖𝑛(𝜑)+4 𝑚𝜋±)

2
−4∗5∗

2

√5
𝑚𝐾0∗𝑠𝑖𝑛(𝜑)∗𝑚𝜋±

 

Obviously,  
1

10
= 1 −

9

10
 , and here is the  

9

10
  reappear: if we went to replace it in some of 

the expressions in which it is present (for example in [1.4] ), inserting it in the form: 

 1 −
 𝑚𝜋0

(
4

√5
𝑚𝐾0∗𝑠𝑖𝑛(𝜑)+4 𝑚𝜋±)+√(

4

√5
𝑚𝐾0∗𝑠𝑖𝑛(𝜑)+4 𝑚𝜋±)

2
−4∗5∗

2

√5
𝑚𝐾0∗𝑠𝑖𝑛(𝜑)∗𝑚𝜋±

     [2.17] 

in addition to the remarkable complication of the formulas, we would notice the swirling 

“nesting” of particles within other particles. 

From [2.14] we are now able to express a second version of 𝑚𝜋± : 

 

                  [2.18] 

  

 

or in the equivalent but more concise form: 

 

              [2.19] 

 

which, written as follows: 

 

                [2.20] 

 

more explicitly shows 𝑚𝜋± as a linear combination of 𝑚𝜋0 and 𝑚𝐾0 . 

 

Also, remembering that      (ref. [1.10] ), if from [2.7] we take: 
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𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±) = √(
2𝑚𝜇 − 2𝑚𝑛 ∗ (𝑐𝑜𝑠(𝜑) −

9
10)

𝑚𝑝
+
9

10
)

2

− 1 

𝑚𝑒 = (
5√5 ∗ 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±)

4√5 − 2𝑠𝑖𝑛(𝜑) ∗
𝑚𝐾0

𝑚𝜋0

) ∗ 𝑚𝜋0 −(
4𝑠𝑖𝑛(𝜑) ∗ 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±)

4√5 − 2𝑠𝑖𝑛(𝜑) ∗
𝑚𝐾0

𝑚𝜋0

) ∗ 𝑚𝐾0 

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) =
2𝑚𝜇 − 2𝑚𝑛 ∗ (𝑐𝑜𝑠(𝜑) −

9
10)

𝑚𝑝
+
9

10
 

 

           [2.21] 

            

we can write 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±) in a version independent from 𝑚𝑒, that is: 

 

                  [2.22] 

 

(where  𝑐𝑜𝑠(𝜑) appears as in [2.5] ) . If we multiply [2.22]  by  [2.20] , we get a further formula 

for 𝑚𝑒, that is:    

 

[2.23]  

 

 

with 𝑠𝑖𝑛(𝜑) brought back to the original version [2.2] for not explicitly having 𝑚𝑒 on the right 

side of the formula, also evidently a linear combination of 𝑚𝜋0 and  𝑚𝐾0. 

 

PART III – A further formula for 𝒎𝝅𝟎, introducing the mass of 𝐊± meson. 

Let's take a step back now. We have seen that 𝑚𝜋± in the first version ( [1.9] ) is: 

𝑚𝜋± =
𝑚𝑒

√(
𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑚𝑝
+
9
10)

2

− 1

 

At this point we can ask whether 𝑚𝜋0 can also be represented using a similar expression. 

After all, the masses of the two mesons do not differ much, so it is reasonable to think that 

some variation in the formula of the  𝑚𝜋± leads to that of the 𝑚𝜋0.  

The answer is yes, and the variation consists in changing the exponent of 𝑒𝜋.  
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𝑚𝜋0 =
𝑚𝑒

√
  
  
  
  
  
 

(

  
 𝑚𝜇 − 𝑒

(𝜋−(
𝑚𝑝

𝑚𝐾±
)∗
𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±)−

9

10

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±)+
9

10

+
1

10
)

∗ 𝑚𝑒
𝑚𝑝

+
9
10

)

  
 

2

− 1

 

𝑚𝑝 ∗
𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −

9
10

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) +
9
10

 
𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑐𝑜𝑠ℎ(𝜃mπ±) +
9
10

 

 

𝑚𝜋0 =
𝑚𝑒

√
  
  
  
  
  
 

(

  
 𝑚𝜇 − 𝑒

(𝜋−
𝑚𝜇−𝑒𝜋∗𝑚𝑒

𝑚𝐾±∗(𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±)+
9

10
)
+
1
10)

∗ 𝑚𝑒
𝑚𝑝

+
9
10

)

  
 

2

− 1

 

This modification has a cost, i.e. the introduction of a further mass, that of the charged meson 

𝐾±. In fact, it is necessary to replace the exponent 𝜋 with: 

𝜋 − (
𝑚𝑝

𝑚𝐾±
) ∗

𝑐𝑜𝑠ℎ(𝜃mπ±) −
9
10

𝑐𝑜𝑠ℎ(𝜃mπ±) +
9
10

+
1

10
 

With this value, which we will abbreviate in 𝜋-Φ, the new formulation of the 𝑚𝜋0 becomes: 

𝑚𝜋0 =
𝑚𝑒

√(
𝑚𝜇 − 𝑒(𝜋−𝛷) ∗ 𝑚𝑒

𝑚𝑝
+
9
10)

2

− 1

 

formula whose structure is similar to that of 𝑚𝜋±, and which in full becomes: 

                     [3.1] 

 

 

 

 

Based on previously established relationships (see [1.5] ), 

 

        is equivalent to:           ,     

 

so that a further formulation for 𝑚𝜋0 is: 

 

                   [3.2]  
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𝑚𝜋0 =
𝑚𝑒

𝑠𝑖𝑛ℎ(𝜃𝑚𝜋0)
 

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋0) =
𝑚𝜇 − 𝑒

(𝜋−
𝑚𝜇−𝑒𝜋∗𝑚𝑒

𝑚𝐾±∗(cosh(θmπ±)+
9
10
)
+
1
10
)

∗ 𝑚𝑒

𝑚𝑝
+
9

10
 

 

 

(

  
 𝑚𝜇 − 𝑒

(𝜋−
𝑚𝜇−𝑒𝜋∗𝑚𝑒

𝑚𝐾±∗(cosh(θmπ±)+
9
10
)
+
1
10
)

∗ 𝑚𝑒

𝑚𝑝
+
9

10

)

  
 

2

− (
𝑚𝑒

𝑚𝜋0
)
2

= 1  

 

𝑚𝑝 =
𝑚𝜇 − 𝑒

(𝜋−
𝑚𝜇−𝑒𝜋∗𝑚𝑒

𝑚𝐾±∗(cosh(θmπ±)+
9
10
)
+
1
10
)

∗ 𝑚𝑒

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋0) − 
9
10

 

𝑚𝜇 = 𝑚𝑝 (𝑐𝑜𝑠ℎ(𝜃𝑚𝜋0) −
9

10
) +  𝑒

(𝜋−
𝑚𝜇−𝑒𝜋∗𝑚𝑒

𝑚𝐾±∗(cosh(θmπ±)+
9
10
)
+
1
10
)

∗ 𝑚𝑒 

which once again highlights the nesting of the masses. 

Also in this formula, by analogy with 𝑚𝜋± , we define the whole denominator equal to  

𝑠𝑖𝑛ℎ(𝜃𝑚𝜋0) and write, in much shorter form: 

     [3.3]  

 

Consequently,  

 

            [3.4] 

 

and therefore:   𝑐𝑜𝑠ℎ2(𝜃𝑚𝜋0) − 𝑠𝑖𝑛ℎ2(𝜃𝑚𝜋0) = 1 , that is: 

 

 

             [3.5] 

 

 

From [3.4] we obtain, for instance, further formulas for 𝑚𝑝 e 𝑚𝜇, where however: 

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋0) = √1 + 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋0)2 =  √1+ (
𝑚𝑒

𝑚𝜋0
)
2
 : 

 

           [3.6] 

 

 

                  [3.7] 
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𝑚𝐾± =

𝑚𝑝 ∗
𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −

9
10

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) +
9
10

𝜋 +
1
10

− 𝑙𝑛

(

 
 
𝑚𝜇 −𝑚𝑝 ∗ (√1 + (

𝑚𝑒
𝑚𝜋0

)
2
−
9
10
 )

𝑚𝑒

)

 
 

 

 

 

𝑚𝐾± =

𝑚𝑝 ∗
𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −

9
10

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) +
9
10

𝜋 +
1
10

− 𝑙𝑛(
𝑚𝜇 −𝑚𝑝 ∗ (𝑐𝑜𝑠ℎ(𝜃𝑚𝜋0) −

9
10)

𝑚𝑒 )

    

 

𝑚𝐾± =

𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) +
9
10

𝜋 +
1
10

− 𝑙𝑛(
𝑚𝜇 −𝑚𝑝 ∗ (𝑐𝑜𝑠ℎ(𝜃𝑚𝜋0) −

9
10)

𝑚𝑒 )

 

 

Explaining now the [3.1] for 𝑚𝐾±, we reach: 

 

 

            [3.8] 

 

 

 

that we can rewrite as: 

 

            [3.9] 

 

 

or as: 

 

            [3.10] 

 

 

A further implicit equation for 𝑚𝐾± is obtained by exploiting some of the relations obtained 

so far:  

 

            [3.11] 

 

 

  

𝑚𝜇 − 𝑚𝑝 ∗ (𝑐𝑜𝑠ℎ(𝜃mπ0) −
9
10
)

𝑚𝜇 − 𝑚𝑝 ∗ (𝑐𝑜𝑠ℎ(𝜃mπ±) −
9
10
)
= 𝑒

(
1
10 – 

𝑚𝜇−𝑒𝜋∗𝑚𝑒

𝑚𝐾±∗(𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±)+
9

10
)
)
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𝑚𝜂 = 2𝑚𝑒 ∗ 𝑒
(2𝜋+(

𝑚𝑝2+𝑚𝑒2

𝑚𝑝2−𝑚𝑒2
) ∗ 

𝑚𝑒2

𝑚𝑝2
 ∗ 

𝑐

9𝜋2
 −1)

 

𝑚𝜏 = 6𝑚𝑒 ∗ 𝑒
(2𝜋+ 

𝑒(2𝜋+𝐵−1)∗𝑚𝑒−𝑚𝜇
𝑚𝑝  – 𝑐𝑜𝑠ℎ(𝜃mπ±) + 

9
10
)
 

 

𝐵 =
√1 + (

𝑚𝑒
𝑚𝜋0

)
2

√1 + (
𝑚𝑒
𝑚𝐾0)

2
 

 

𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) =
𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑚𝑝
+
9

10
 

 

𝑚𝜏 = 6𝑚𝑒 ∗ 𝑒
(2𝜋+ 

(𝑒
(2𝜋+𝐵−1)

+𝑒𝜋)∗𝑚𝑒−2𝑚𝜇
𝑚𝑝  )

 

PART IV – The masses of particles 𝜂 and 𝜏. 

 

The particle we will now consider is 𝜂, whose mass we will denote by 𝑚𝜂. This is its formula: 

 

         [4.1] 

  

(The constant c is the value of the speed of light.) 

We now come to the expression of the mass of the largest of the leptons, the particle 𝜏 (𝑚𝜏), 

which has a structure similar to [4.1]: 

 

            [4.2]    

        

 

where factor B on the exponent holds:      

 

Since:              

we can also rewrite  𝑚𝜏 as: 

 

         [4.3] 

 

So, in both particles 𝜂 and τ  the dimension of mass is provided by the electron. 
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𝑒
(2𝜋+(1+

𝑚𝑒2

𝑚𝑝2
)∗(

𝑚𝑒2

𝑚𝑝2−𝑚𝑒2
)∗ 

𝑐
9𝜋2

−1 )
 

 

1 +
𝑚𝑒2

𝑚𝑝2
 

 

1 +
𝑚𝑒2

𝑚𝜋±
2 

 

 

1 +
𝑚𝑒2

𝑚𝑝2
 

𝑒
(2𝜋+(1+

𝑚𝑒2

𝑚𝜋±
2)∗(

𝑚𝑒2

𝑚𝑝2−𝑚𝑒2
)∗ 

𝑐
9𝜋2

−1 )
 

𝑒
2∗(

𝑚𝑒2

𝑚𝜋±
2 – 

𝑚𝑒2

𝑚𝑝2
)∗(

𝑚𝑒2

𝑚𝑝2−𝑚𝑒2
)∗ 

𝑐
9𝜋2 

 

𝑚𝜇

2𝑚𝛬𝑐
+ +𝑚𝛬𝑠

0 – 𝑚𝛬𝑏
0 ∗ (

𝑚𝐾± −𝑚𝜇

𝑚𝐾± +𝑚𝜇
) =  𝑒

2∗(
𝑚𝑒2

𝑚𝜋±
2 – 

𝑚𝑒2

𝑚𝑝2
)∗(

𝑚𝑒2

𝑚𝑝2−𝑚𝑒2
)∗ 

𝑐
9𝜋2 

 

𝐴 = 𝑚𝜇 ∗ (
𝑚𝐾± −𝑚𝜇

𝑚𝐾± + 𝑚𝜇
) 

 
 

𝐷 = 2 ∗ (
𝑚𝑒2

𝑚𝜋±
2  – 

𝑚𝑒2

𝑚𝑝2
) ∗ (

𝑚𝑒2

𝑚𝑝2 −𝑚𝑒2
) ∗ 

𝑐

9𝜋2
 

 

PART V – Three members of the Λ family (𝜦𝒔
𝟎 , 𝜦𝒄

+ , 𝜦𝒃
𝟎) 

 

Let's take the exponential in the formula of 𝑚𝜂, that is: 

[5.1] 

 

and replace    with              (that is, with  𝑐𝑜𝑠ℎ2(𝜃𝑚𝜋±) ).                   

 

We get: 

 

[5.2] 

 

If we now divide the modified exponential [5.2] with the original one [5.1] and square the result, 

we obtain: 

 

        [5.3]   

 

Now, there is a numerical equivalence whereby: 

 

[5.4] 

 

where 𝑚𝛬𝑠
0 , 𝑚𝛬𝑐

+ , 𝑚𝛬𝑏
0   are the masses of 𝛬𝑠

0 , 𝛬𝑐
+ , 𝛬𝑏

0   respectively. 

From [5.4] one can therefore obtain the mass of each of the Λ particles as a function of the 

others. 

 

If we put:          ;              , 
 

we may write: 

 



15 
 

 𝑚𝛬𝑠
0 = 𝑚𝛬𝑏

0 − 2𝑚𝛬𝑐
+ + 𝐴𝑒−𝐷 

 
𝑚𝛬𝑏

0 = 2𝑚𝛬𝑐
+ +𝑚𝛬𝑠

0 − 𝐴𝑒−𝐷 

𝑚𝛬𝑐
+ =

1

2
∗ (𝑚𝛬𝑏

0 −𝑚𝛬𝑠
0 + 𝐴𝑒−𝐷) 

 

𝑚𝛬𝑠
0 =

2𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2 (
𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±)

𝜃𝑚𝜋±
−
9
10)

 

𝑚𝛬𝑐
+ =

2𝜃𝑚𝜋±

𝛼 ∗ 𝑒𝜃𝑚𝜋
± ∗ (

𝑚𝑒 ∗ 2 (𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −
9
10)

∗ (2𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒)

𝑚𝛬𝑠
0 ∗ 2 (𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −

9
10)

− (2𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒)
) 

 

        [5.5]  

 

        [5.6] 

 

        [5.7] 

 

The masses of the single elements of the family Λ are known with decreasing experimental 

precision starting from 𝑚𝛬𝑠
0, for which, within the above limits, the formula holds: 

 

       [5.8] 

 

[ where:  𝜃𝑚𝜋± = 𝑙𝑛(𝑒𝜃𝑚𝜋
±

) = 𝑙𝑛(𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) + 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±)) ]   

which is analogous to that of the neutron and the proton. 

By introducing the fine structure constant 𝛼, for 𝑚𝛬𝑐
+  we can also write: 

 

             [5.9] 

 

where 𝑚𝛬𝑠
0 in denominator represents the part on the right in the relation [5.8]. 

At this point, for [5.7], we can easily write the 𝑚𝛬𝑏
0  in a formally independent manner from the 

others Λ, using [5.8] and  [5.9]. In the extended form, it is then: 

𝛬𝑏  
0 = 2 ∗

2𝜃𝑚𝜋±

𝛼 ∗ 𝑒𝜃𝑚𝜋
± ∗

(

 
 
 𝑚𝑒 ∗ 2 (𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −

9
10) ∗

(2𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒)

2𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2 (
𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±)

𝜃𝑚𝜋±
−
9
10
)
∗ 2 (𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) −

9
10) −

(2𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒)

)

 
 
 
+ 

+
2𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2 (
𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±)

𝜃𝑚𝜋±
−
9
10
)
−  𝑚𝜇 ∗ (

𝑚𝐾± −𝑚𝜇

𝑚𝐾± +𝑚𝜇
) ∗ 𝑒

−2∗( 𝑚𝑒
2

𝑚𝜋±
2 – 

𝑚𝑒2

𝑚𝑝2
)∗(

𝑚𝑒2

𝑚𝑝2−𝑚𝑒2
)∗ 

𝑐
9𝜋2 
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𝑚𝜋0 ∗ (𝑚𝑛 −𝑚𝑝) ∗ 𝑚𝑛 ∗ 𝑚𝐾±

𝑚𝑒 ∗ 𝑚𝜇 ∗ 𝑚𝜋± ∗ (𝑚𝑛2 +𝑚𝐾±2)
1
2  

≅ 4 ∗ ln(4𝜋) 

 

𝑚𝑒 +𝑚𝜇 +𝑚𝜏

(√𝑚𝑒 + √𝑚𝜇 + √𝑚𝜏)
2 ∗ (1 + 𝑒𝜃𝑚𝜋

±

− 𝑒
𝛼
2) =

2

3
 

As seen in these and previous examples, the same "blocks" or groups of masses and 

coefficients occur in most formulas. Furthermore, given the mutual relationships between the 

masses, it is possible to connect each of them with each other. 

 

PART VI – Other numerical relationships  

 

PART VI.1 – A ratio between the masses of some particles  

Numerical analyzes show that, with an excellent approximation (up to the 7th decimal digit), 

the following relation holds: 

 

          [6.1.1] 

 

but assuming for 𝑚𝑒 the value  9,109382571*10-31, which in any case falls within the error 

margins of the data provided by NIST, the equality is valid up to the 9th decimal digit. 

 

PART VI.2 - Modification of Koide’s formula  

In the so-called "Koide’s formula" (Yoshio Koide, 1981) which correlates the three leptons: 

𝑚𝑒 +𝑚𝜇 +𝑚𝜏

(√𝑚𝑒 + √𝑚𝜇 + √𝑚𝜏)
2  ≅

2

3
 

(= 0,666658270 with the values available), you can further approach  
2

3
   by introducing the 

factor  (1 + 𝑒𝜃𝑚𝜋
±

− 𝑒
𝛼

2) : 

 

          [6.2.1]  

 

(= 0,666666666 with the values available), where: 
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𝑐𝑜𝑠(𝜑) = (
2𝛼

𝜇0
∗
4

𝜋
∗
(1 + 2𝜃𝑚𝜋± − 𝛼)2 ∗ 𝑒2𝜋

𝑐
)

1
2

− 𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) + 2 ∗
9

10
 

𝑚𝑒

𝑚𝜋0
= (

5√5𝑚𝜋0 − 4𝑠𝑖𝑛(𝜑) ∗ 𝑚𝐾0

 4√5𝑚𝜋0 − 2𝑠𝑖𝑛(𝜑) ∗ 𝑚𝐾0
) ∗ 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±) 

 

𝑐 =
2𝛼

𝜇0
∗
4

𝜋
∗

(1 + 2𝜃𝑚𝜋± − 𝛼)2 ∗ 𝑒2𝜋

(𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) + cos(𝜑) − 2 ∗
9
10
)2

 

 

𝑐 =
2𝛼

𝜇0
∗
4

𝜋
∗

(1 + 2𝜃𝑚𝜋± − 𝛼)2 ∗ 𝑒2𝜋

(
𝑚𝜇 − 𝑒𝜋 ∗ 𝑚𝑒

𝑚𝑝
+
𝑚𝜇 + 𝑒𝜋 ∗ 𝑚𝑒

2𝑚𝑛 )
2 

𝑒𝜃𝑚𝜋
±

= 𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) + 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±) , and  𝛼  is the fine structure constant.  

( 
1

𝛼
 = 137,035999834, while we note that   

𝑒𝜃𝑚𝜋
±

2𝜃𝑚𝜋±
  = 137,067247645). 

 

PART VI.3 - Relationship between 𝑐𝑜𝑠(𝜑), 𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) and 𝑐  

The equation:  

 

                  [6.3.1] 

  

[ where:  𝜃𝑚𝜋± = 𝑙𝑛(𝑒𝜃𝑚𝜋
±

) = 𝑙𝑛(𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±) + 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±)) ] 

establishes a further relationship between  𝑐𝑜𝑠(𝜑) and 𝑐𝑜𝑠ℎ(𝜃𝑚𝜋±), involving 𝑐, 𝛼 and the 

magnetic permeability constant  𝜇0. The numerical value of 𝑐 can be written as: 

 

             [6.3.2] 

 

a formula which is equivalent to: 

 

              [6.3.3] 

 

 

 

PART VI.4 – Relationship between 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋0), 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±) and 𝑠𝑖𝑛(𝜑)  

Since: 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋0) = 
𝑚𝑒

𝑚𝜋0
  , and: 

 

          [see 2.22]  
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𝑠𝑖𝑛ℎ(𝜃𝑚𝜋0) = (
5√5𝑚𝜋0 − 4𝑠𝑖𝑛(𝜑) ∗ 𝑚𝐾0

 4√5𝑚𝜋0 − 2𝑠𝑖𝑛(𝜑) ∗ 𝑚𝐾0
) ∗ 𝑠𝑖𝑛ℎ(𝜃𝑚𝜋±) 

then: 

 

           [5.4.1] 

 

which correlates the two hyperbolic sinuses with the trigonometric sinus. 
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